
Notes1 ECE 2500 Digital Logic
To the First Exam

©2026 Prof. Dean R. Johnson

Lecture Topics:

The Digital World
Boolean Algebra
Logic Gates & Circuits
minterms and K-maps
Maxterms and K-maps

THE DIGITAL WORLD

Major Application of Digital Logic: the design of processor chips in computers and mobile devices.

Classic iPod (4th generation 2004)
From: electronics.howstuffworks.com/ipod3.htm

 Photo credit: apple.com
Display (320 x 240 pixel LCD)
From: electronics.howstuffworks.com/lcd2.htm
Click Wheel (capacitive sensing controller)
From: electronics.howstuffworks.com/ipod4.htm
PortalPlayer SOC processor (dual core)

 Photo credit: microblog.routed.net
Memory (SDRAM 32 MB)
Hard drive (30 GB)

iPhone 17 Pro differences (2025)
From: https://en.wikipedia.org/wiki/List_of_iOS_devices

http://electronics.howstuffworks.com/ipod3.htm
http://electronics.howstuffworks.com/lcd2.htm
http://electronics.howstuffworks.com/ipod4.htm
http://en.wikipedia.org/wiki/IPhone

 Image credit: apple.com
6 GB memory
128-1012 GB solid-state drive
Touch HDR display (2556 x 1179 pixel color OLED)
64 bit Apple A19 Pro SOC processor

Hex-core CPU
Hex-core GPU
16-core NPU

Image Credit:
Apple

Digital Logic Components: these are the digital building blocks that will be studied in this course.

Register (holds various forms of digital data)
Port (a register interfacing data to/from the outside world)

http://www.youtube.com/v/bGlWuf92LLI
http://www.youtube.com/v/bGlWuf92LLI

ALU (adds contents of 2 registers)

Bus (A path by which data may flow from one register to another in parallel)

USB cable (A path by which data packets may be transferred serially to ports from a hub)

Encoder (Encodes or compresses data)
Decoder (Decodes or expands data. Also used to make memory location selections)
MUX (Selects between many data sources)

ROM (An storage array that can be read word by word, chosen by an address)

RAM (A storage array that also can be written to)

Hard Disk Drive (A magnetic storage device from which blocks of data can be stored and read

USB drive (A ROM device which can transfer data in blocks over a USB cable)

Microcontroller MCU (A processing device consisting of an ALU, registers, ports and RAM)

Microprocessor CPU (More powerful processor that has extensive memory and multiple ALUs)

Graphic Processing Unit GPU
The H100 consists of 144 Streaming Multiprocessors (SM)
Each SM has a tensor core capable of fast matrix algebra

A GPT AI Large Language Model (LLM) application requires:
64-256 GPUs for inference
25,000 GPUs for training

Digital Data Types

Numeric

 Graphic credit: techspirited.com
Beginnings:

bit (b) defined by Claude Shannon as "basic information digit" (1948)
byte (B) coined by IBM researcher Werner Buchholtz (1964)

Image credit: ComputerHope.com
A new bit used in Quantum Computing is the Qubit:

Image credit: IBTimes UK
Integers in a byte (8 bits)

Total unsigned (0 -> 255, 256 total members)

Example: Hexadecimal and decimal

Comparison of decimal, binary, octal and hex:

Fractionals in a byte
Example:

Integer conversions between binary, octal and hex
Octal: group in3 bits
Hex: group in 4 bits
Example #1:

Example #2:

Juxtapositional notation:
Integer, radix point and fraction

Examples: (radix = base)

Non-numeric
Characters

ASCII: 1 B for each of 28 = 256 English, control and special characters (Latin-1)

 From: http://www.asciitable.com/

http://www.asciitable.com/

UNICODE: 224 ~17 million characters with code points spread over 2 or 3B (UTF-16 or 24).
Handles international characters & emoticons

From: https://unicode.org/emoji/charts/full-emoji-list.html
Color Codes
From: howstuffworks.com/lcd5.htm

More html examples:
immigration-usa.com/html_colors.html
24 bit color -> 224 ~ 17 million colors

Red 1 B => 256 shades
Green 1 B => 256 shades
Blue 1 B => 256 shades

Binary arithmetic:

Bit by bit addition is done right to left, with carry bits

https://unicode.org/emoji/charts/full-emoji-list.html
http://electronics.howstuffworks.com/lcd5.htm
http://www.immigration-usa.com/html_colors.html

Examples: Adding

Subtraction can be done by employing borrow bits, or more simply, by adding something called a 2's
complement.

Examples:

The concept of a complement of a decimal number:

2's complement procedure:
Reverse all the bits of N
Add 1 to the result. This is N*.
The sign of N* (as well as N) is shown by the most significant bit: 0 = “+”; 1 = “-“
Examples:

All the 2's complement numbers that fit into a byte.
127 positive numbers N (sign bit = 0)
128 negative numbers N* (sign bit = 1)

Zero (not shown)

Error Correction Codes (ECC):

Provides self-correction of errors that occur in the data when transporting data
Scratched disk alter recorded data:

 From: hardwaresecrets.com/
Cosmic rays flip one bit in a 4GB chip everyday:

From: spectrum.ieee.org/

http://www.asciitable.com/
http://www.asciitable.com/

Defaced QR code:

 From: hwww.i-programmer.info
Reed-Solomon ECC code in QR:

en.wikiversity.org/wiki/Reed%E2%80%93Solomon_codes_for_coders

Quiz #1 & selected solutions

BOOLEAN ALGEBRA

(Photo credit: Vic Lee, King Features Syndicate)

Some Preliminaries...

Binary numbers can also be used to represent truth or logic values.

Logic defined: the process of classifying information.

Binary logic (or more commonly, digital logic) is the process of classifying information into two distinct classes, e.g.

http://www.asciitable.com/
https://en.wikiversity.org/wiki/Reed%E2%80%93Solomon_codes_for_coders
https://webwriters.com/ece2500/Quiz1/quiz.html
https://webwriters.com/ece2500/Lecture_Slides/Quiz1.pdf

 (TRUE, FALSE) = truth values
 (Yes, No)
 (CLOSE, OPEN) = relay positions
 blown, intact = fuse state
 (ON, OFF) = switch positions
 (1, 0) = binary numbers, or (Logic 1, Logic 0)

Logic design is based upon the three logic operators

Binary Logic Operations (Variables)

AND: z = x•y
OR: z = x+y
NOT: z = x'

Binary Logic Operations
OR XOR AND
0 + 0 = 0 0 ⊕ 0 = 0 0 • 0 = 0
0 + 1 = 1 0 ⊕ 1 = 1 0 • 1 = 0
1 + 0 = 1 1 ⊕ 0 = 1 1 • 0 = 0
1 + 1 = 1 1 ⊕ 1 = 0 1 • 1 = 1

Two Level Logic Circuits with AND/OR/XOR gates:
From: computer.howstuffworks.com/boolean1.htm

AND-OR circuits (sum of product = SOP)

OR-AND circuits (product of sum = POS)

These circuits can also be described algebraically with the use of an algebra system for logic variables called…

Boolean Algebra

Fundamental properties of Boolean Algebra: Each x, y and z are elements of B = {0,1}
 1. Identities: (P3, P4) (Dual)
 x+0 = x x•1 = x
 x+1 = 1 x•0 = 0
 Also Idempotency: (P6)
 x+x = x x•x = x
 2. Commutativity: (P1)
 x+y = y+x x•y = y•x
 3. Associativity: (P2)

http://computer.howstuffworks.com/boolean1.htm

 x+(y+z) = (x+y)+z x•(y•z) = (x•y)•z
 4. Distributivity: (P8)
 x+(y•z) = (x+y)•(x+z) x•(y+z) = x•y+x•z
 5. Existence of the complement: (P5)
 There exists an element x', called NOT x, such that
 x+x' = 1 x•x' = 0
 6. Involution: (P7) (x')' = x
 7. Absorption: (P12)
 x+xy = x x(x+y) = x
 8. Adjacency: (P9)
 xy+xy' = x (x+y)•(x+y') = x
 9. DeMorgan’s Law: (P11)
 (x+y+z)' = x'y'z' (x•y•z)' = x'+y'+z'
Duality: Left and right hand properties above are duals

A dual may be derived by interchanging
1 and 0
• (AND) and + (OR)

Examples:

Boolean Functions and Logic Circuits

Boolean function f
f(A, B, C) is an algebraic expression of A, B, C
A, B, C are Boolean variables

Boolean functions are implemented by logic circuits
Boolean functions may be simplified, resulting in simpler logic circuits
Circuits and functions may be verified by constructing a truth table
Example #1:

Derive a logic circuit from a Boolean function:

Example #2:

Derive a Boolean function for a half adder:

Make a full adder from two half adders:

Example#3
Simplify the Boolean function of Example#1 by pattern matching terms with the Boolean properties
above:

Compare before and after circuits with a truth table:

Example #4: More simplifications

Example #5: DeMorgan's Law

Quiz #2 & selected solutions

LOGIC GATES AND CIRCUITS

DeMorgan’s Laws Shows Equivalent Graphical Symbols for Logic Gates: Examples are given to describe

NAND gate drawn with an OR symbol

NOR gate drawn with an AND symbol

NOTs built from NANDs, NORs and XORs

https://webwriters.com/ece2500/Quiz2/quiz.html
https://webwriters.com/ece2500/Lecture_Slides/Quiz2.pdf

Two Level Logic Circuits with Other Gates: Examples are given to describe

NAND-NAND circuits = AND-OR circuits; makes SOP functions
(Leading NAND looks like an OR)

NOR-NOR circuits = OR-AND circuits; makes POS functions
(Leading NOR looks like an AND)

Example: NAND-NOR Combination

Example: Carry-lookahead adder logic
Most heavily designed circuit in the history of electronics
NOT, NAND, NOR, XOR combination
Gate fronts and backs match so bubbles cancel

CMOS Implementation of Logic Gates
Examples are shown to implement NAND, NOR, and NOT gates from elementary NMOS and PMOS transistors.

CMOS transistors = NMOS plus PMOS
Current flows between the Source and the Drain
The Gate voltage controls the conduction value between the Source and Drain:

Three states of a NMOS and PMOS transistors:
OFF state (Nonconducting)

ON state (Conducting)

Resistive state (A resistor)

NAND, NOR and NOT gates can be constructed from two to four transistors.

NOT

NAND

NOR

AND and OR gates
Require at least six CMOS transistors.

Example: OR gate = NOR plus NOT

Integrated circuit layout for NOT, NAND and NOR gates, using CMOS.
Zoom down inside an IC to see gates!

Quantum Computing Implementation of Logic Gates
Taken from: mcharemza_quant_circ.pdf

Pauli X (NOT) gate
|0> State becomes |1> State

CNOT gate (controlled NOT)
|0> State becomes |1> State if the Control is |1>

Toffoli gate (CCNOT)

AND/NAND gates
0 ⊕ xy = xy, 1 ⊕ xy = (xy)'

http://www.sccs.swarthmore.edu/users/06/adem/engin/e77vlsi/lab3/
https://learn.sparkfun.com/tutorials/integrated-circuits

Example Quantum Full Adder Circuit

(Image: thequantuminsider.com)

H gate
|0> State becomes 50% superimposed with |1> State

Example random number generator:

Quiz #3 & selected solutions

MINTERMS

Suppose we want to expand a certain SOP function f1 into canonical form whereby each resulting product term
contains a literal of every independent variable of f1.

The product terms above are called minterms, the properties of which are now be presented.

Minterm Properties and Notation

A minterm is a product term which produces a single 1 in a truth table

The minterm which yields a 1 in row i is denoted as minterm mi
Express f in terms of minterms:

Compose a minterm list for f. (An atomic list)
Example:

Additional properties of minterm lists

f = Σm(row#s where f = 1)
f ' = Σm(row#s where f = 0)
Σm(all row#s) = 1

Minterm index i
Obtained by determining the row code for which mi = 1
Example:

https://webwriters.com/ece2500/Quiz3/quiz.html
https://webwriters.com/ece2500/Lecture_Slides/Quiz3.pdf

Quiz #4 & selected solutions (also includes Maxterms discussed below)

K-MAPS

Karnaugh Maps

What is a K-map? It is a graphical tool that quickly finds minimal algebraic forms of Boolean functions. The SOP
forms are discussed here; POS forms are described in a later section.

Karnaugh Map Properties

Each cell in a K-map for a function f corresponds to a row of the truth table describing f
Cell i is a place mark for minterm mi.
K-map labels identify the coincidence of literals to combine adjacent minterm.

Sizes of K-maps

Example: 2 variable

Example: 3 variable

https://webwriters.com/ece2500/Quiz4/quiz.html
https://webwriters.com/ece2500/Lecture_Slides/Quiz4.pdf

Example: 4 variable

Procedure for Plotting SOP Functions on a K-map

Determine the minterms mi contained in f (found by observing the rows where f = 1 in the truth table).
Plot the 1’s of the function to be minimized on the K-map.

For each minterm mi in f, enter a 1 in cell i.
Example:

For each don’t care contained in f, enter a d (or x) in the associated K-map cell (see example later).

Procedure for reading minimal SOP expressions from K-maps

Draw loops around adjacent 1-entries (cells with 1's) in largest groups possible.
Group size in a power of two (e.g. 1 cell, 2 cells, 4 cells, 8 cells, etc.)
Example:

Cells over the left and right edges, or the upper and lower edges are also defined to be adjacent.
Example:

1-entries not adjacent to other 1-entries are circled as groups of one.

Example:

Discard redundant groupings
Discard those entries covered entirely by other groups
Example:

For each group (as seen in the several examples above),
Read off the coincident literals, by exploiting K-map labels
AND those literals together to form products formed by the groups
OR the resulting products to create a SOP expression
Examples:

Map Simplification Resulting from Don't Cares

Don’t care = d (or X) = {0,1} (either a 0 or a 1)
Group 1-entries as before, but

Also include any d-entries which serve to increase the size of the group of 1's
Treat unused d-entries as 0-entries
Must have at least one 1-entry in all groups
Example:

Never group cells consisting entirely of don't care entries. This results in a redundant group.

Quiz #5 & selected solutions (includes POS usages)

https://webwriters.com/ece2500/Quiz5/quiz.html
https://webwriters.com/ece2500/Lecture_Slides/Quiz5.pdf

MAXTERMS & K-MAPS

Maxterm Properties and Notation

Now we want to consider expanding a certain POS function f2 into canonical form whereby each resulting sum term
contains a literal of every independent variable of f2.

The sum terms above are called Maxterms, the properties of which now follow.

A Maxterm is a sum term which produces a single 0 in a truth table

Maxterm which yields a 0 in row i is denoted as maxterm Mi
Expressing f in terms of Maxterms:

Compose a Maxterm list for f. (An atomic list)
Example:

Additional properties of Maxterm lists
f = ΠM(row#s where f = 0)
f ' = ΠM(row#s where f = 1)
ΠM(all row#s) = 0

Maxterm index i
Obtained by determining the row code for which Mi = 1

Example:

Other Properties of minterms and Maxterms

f = Σm(row#s) = ΠM(opposite row#s)
f = ΠM(row#s) = Σm(opposite row#s)
If f = Σm(row#s) then f ' = Σm(opposite row#s)
If f = ΠM(row#s) then f ' = ΠM(opposite row#s)

Examples:

mi' = Mi
Mi' = mi

Examples:

K-Map POS Properties

Cell i is a place mark for Maxterm Mi.
K-map labels identify the coincidence of literals to combine adjacent Maxterms.

Procedure for plotting and reading minimal POS expressions from K-maps

Plot the 0’s of the function to be minimized on a K-map.
For each maxterm Mi in f, enter a 0 in cell i.

Example:

Draw loops around adjacent 0-entries.
For each group

Read off the complement of the coincident literals covering the group
OR those literals together to form sums
AND the resulting sums to create a product
Example:

