

Lecture Topics:

- The Digital World
- Boolean Algebra
- Logic Gates & Circuits
- minterms and K-maps
- Maxterms and K-maps

THE DIGITAL WORLD

Major Application of Digital Logic: the design of processor chips in computers and mobile devices.

- **Classic iPod (4th generation 2004)**
From: electronics.howstuffworks.com/ipod3.htm

Photo credit: apple.com

- Display (320 x 240 pixel LCD)
From: electronics.howstuffworks.com/lcd2.htm
- Click Wheel (capacitive sensing controller)
From: electronics.howstuffworks.com/ipod4.htm
- PortalPlayer SOC processor (dual core)

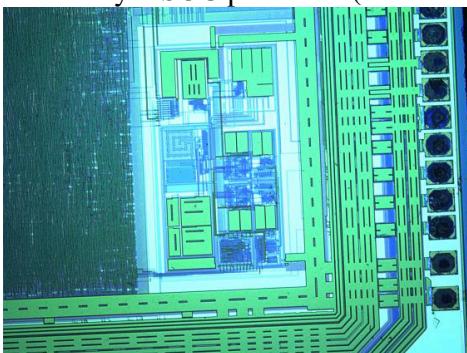


Photo credit: microblog.routed.net

- Memory (SDRAM 32 MB)
- Hard drive (30 GB)
- **iPhone 17 Pro differences (2025)**
From: https://en.wikipedia.org/wiki/List_of_iOS_devices

Image credit: apple.com

- 6 GB memory
- 128-1012 GB solid-state drive
- Touch HDR display (2556 x 1179 pixel color OLED)
- 64 bit Apple A19 Pro SOC processor
 - Hex-core CPU
 - Hex-core GPU
 - 16-core NPU

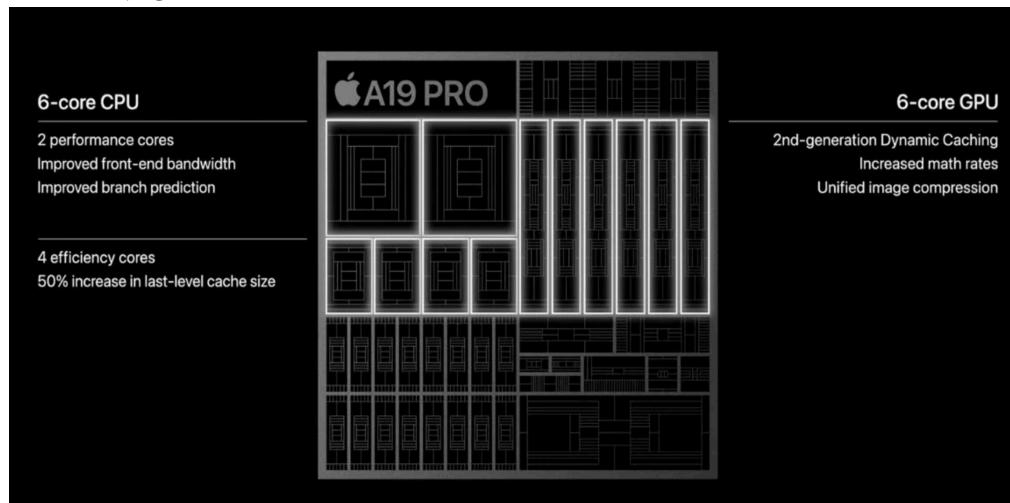


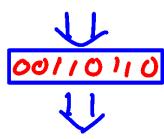
Image Credit:

Apple

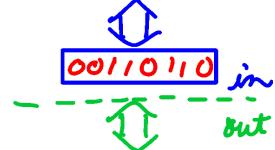
Digital Logic Components: these are the digital building blocks that will be studied in this course.

- **Register** (holds various forms of digital data)
- **Port** (a register interfacing data to/from the outside world)

Register:

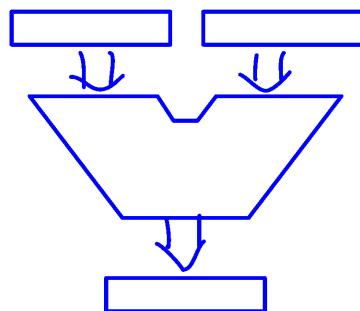


Port:



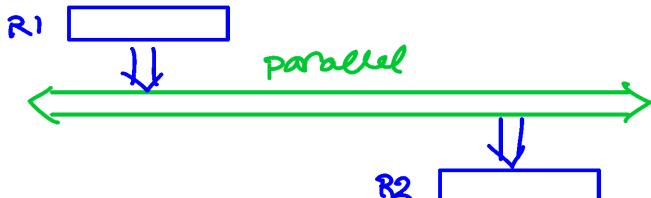
- ALU (adds contents of 2 registers)

A2U:



- Bus (A path by which data may flow from one register to another in parallel)

Bus:



- USB cable (A path by which data packets may be transferred serially to ports from a hub)

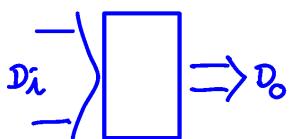
USB:

- Encoder (Encodes or compresses data)

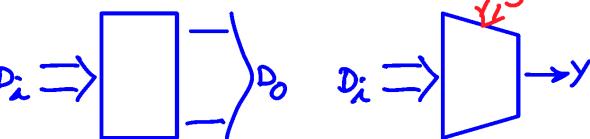
- Decoder (Decodes or expands data. Also used to make memory location selections)

- MUX (Selects between many data sources)

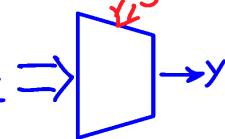
Encoder:



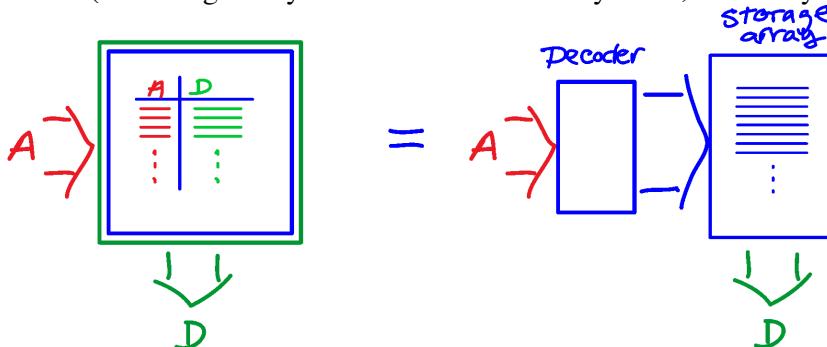
Decoder:



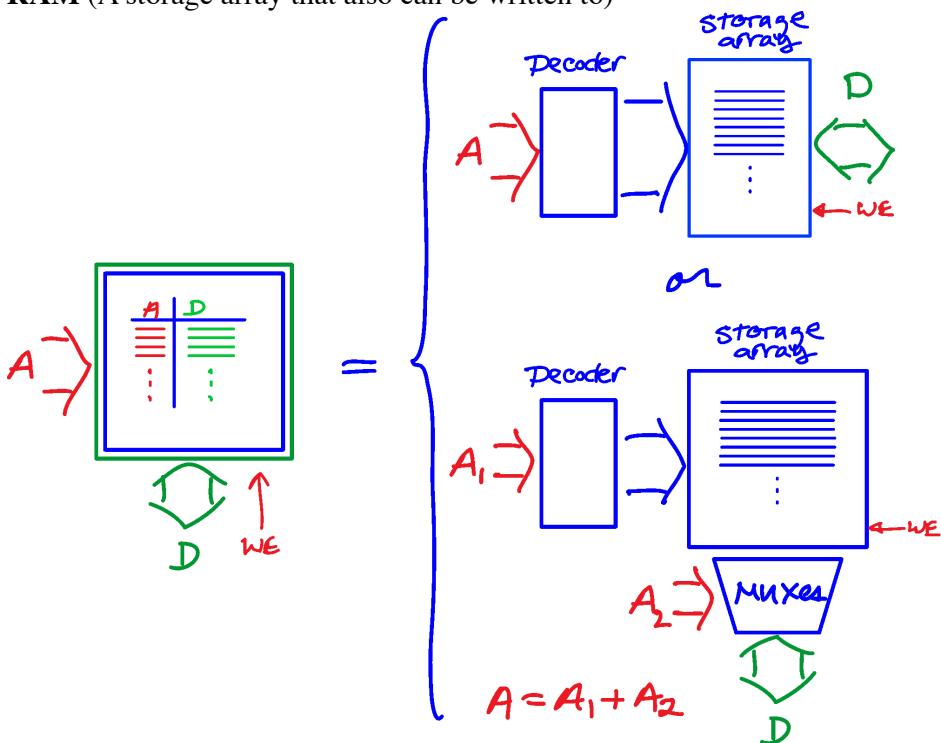
MUX:



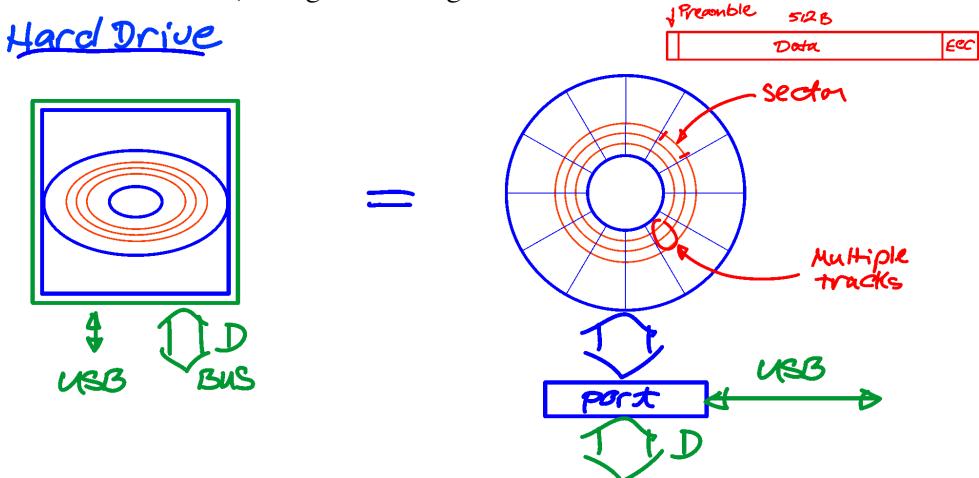
- ROM (An storage array that can be read word by word, chosen by an address)



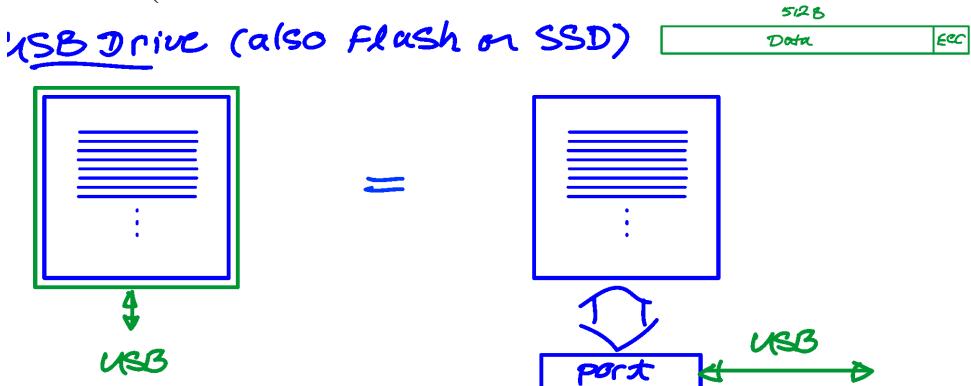
- **RAM** (A storage array that also can be written to)



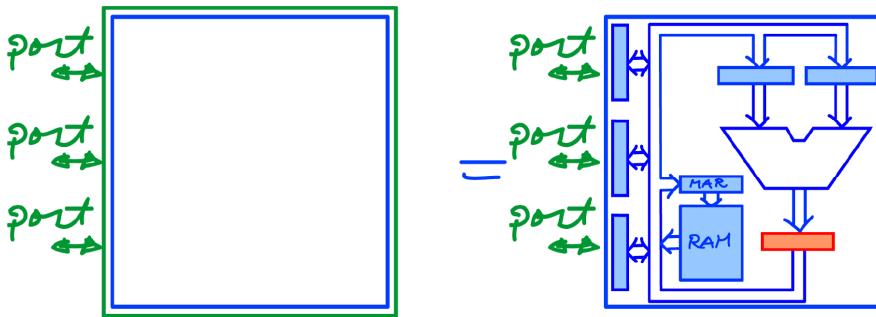
- **Hard Disk Drive** (A magnetic storage device from which blocks of data can be stored and read)



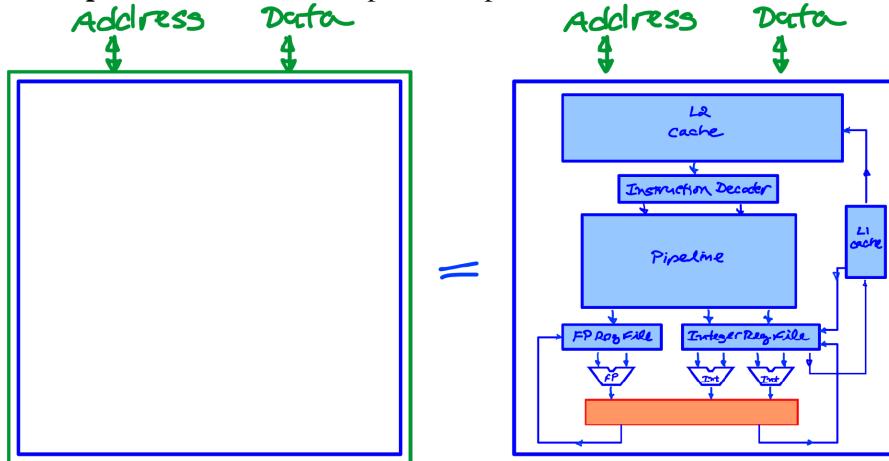
- **USB drive** (A ROM device which can transfer data in blocks over a USB cable)



- **Microcontroller MCU** (A processing device consisting of an ALU, registers, ports and RAM)

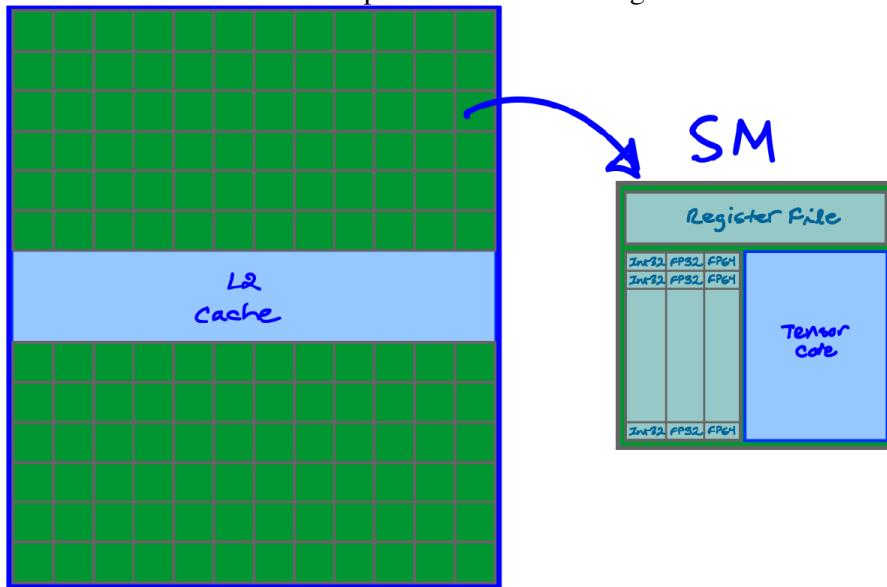


- **Microprocessor CPU** (More powerful processor that has extensive memory and multiple ALUs)



- **Graphic Processing Unit GPU**

- The H100 consists of 144 Streaming Multiprocessors (SM)
- Each SM has a tensor core capable of fast matrix algebra



- A GPT AI Large Language Model (LLM) application requires:
 - 64-256 GPUs for inference
 - 25,000 GPUs for training

Digital Data Types

- Numeric

Graphic credit: techspirited.com

- Beginnings:

- bit (b) defined by Claude Shannon as "basic information digit" (1948)
- byte (B) coined by IBM researcher Werner Buchholtz (1964)

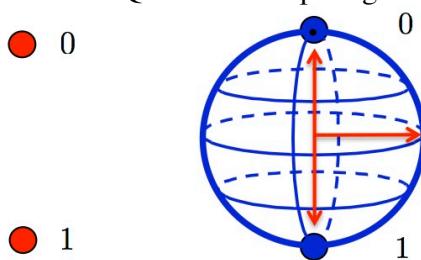
Computer Bit

Computer Byte

ComputerHope.com

Image credit: ComputerHope.com

- A new bit used in Quantum Computing is the Qubit:



Classical Bit

Qubit

Image credit: IBTimes UK

- Integers in a byte (8 bits)

- Total unsigned (0 -> 255, 256 total members)

1 byte hex	decimal	1 byte hex	decimal	1 byte hex	decimal
00000000	= 0 00	00001000	= 8 08	00010000	= 16 10
00000001	= 1 01	00001001	= 9 09	01100011	= 99 63
00000010	= 2 02	00001010	= 10 0A	01100100	= 100 64
00000011	= 3 03	00001011	= 11 0B	11001000	= 200 C8
00000100	= 4 04	00001100	= 12 0C	11001001	= 201 C9
00000101	= 5 05	00001101	= 13 0D	1111101	= 253 FD
00000110	= 6 06	00001110	= 14 0E	1111110	= 254 FE
00000111	= 7 07	00001111	= 15 0F	1111111	= 255 FF

- Example: Hexadecimal and decimal

$$\begin{array}{r}
 \begin{smallmatrix} 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \end{smallmatrix} \\
 \boxed{11001000} = 1 \times 2^7 = 128 \\
 \text{C} \quad 8 \\
 + 1 \times 2^6 = 64 \\
 + 1 \times 2^3 = 8 \\
 \hline
 \text{0xC8} = 200
 \end{array}$$

- Comparison of decimal, binary, octal and hex:

Decimal	Binary	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10

Red 1 and 2 = "Carry"
A,B,C,D,E,F = extra hex digits

Important number conversions
to remember:

$$\begin{aligned}
 (10)_{10} &= (1010)_2 = (A)_{16} \\
 (11)_{10} &= (1011)_2 = (B)_{16}
 \end{aligned}$$

- Fractionals in a byte

- Example:

$$\begin{array}{r}
 \begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{smallmatrix} \\
 \boxed{11001000} = 1 \times 2^{-1} = .5 \\
 \text{. C} \quad 8 \\
 + 1 \times 2^{-2} = .25 \\
 + 1 \times 2^{-5} = .03125 \\
 \hline
 \text{0xC8} = .78125
 \end{array}$$

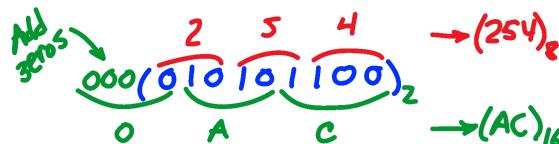
- Integer conversions between binary, octal and hex

- Octal: group in 3 bits

- Hex: group in 4 bits

- Example #1:

Convert $(010101100)_2$ to base 8 and 16



character 1 byte

ASCII: "A" = 0100 0001 = 41

"B" = 0100 0010 = 42

"C" = 0100 0011 = 43

⋮

"ECE 2500" = 45 43 45 20 32 35 30 30
 E C E sp 2 5 0 0
 = 8 bytes

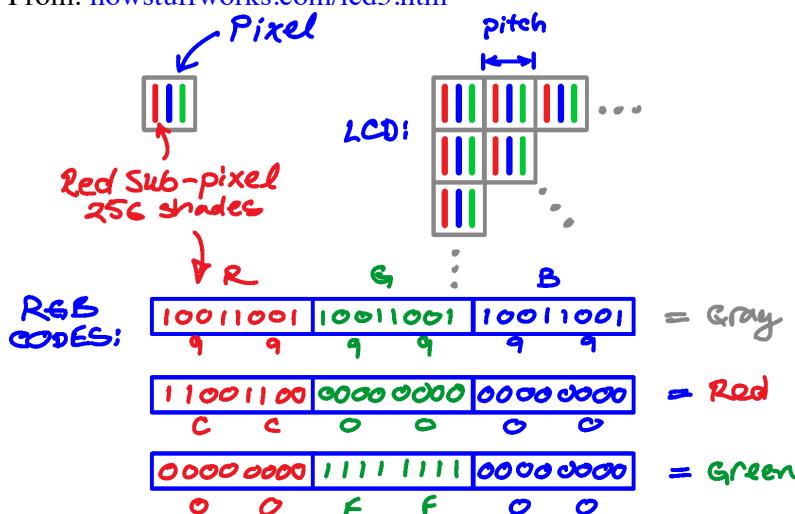
- UNICODE: 2^{24} ~17 million characters with code points spread over 2 or 3B (UTF-16 or 24). Handles international characters & emoticons

Code	Browser	Appl	Goog	Twtr	One	FB	Sams.	Wind.
U+1F914	🤔	🤔	🤔	🤔	🤔	🤔	🤔	🤔

From: <https://unicode.org/emoji/charts/full-emoji-list.html>

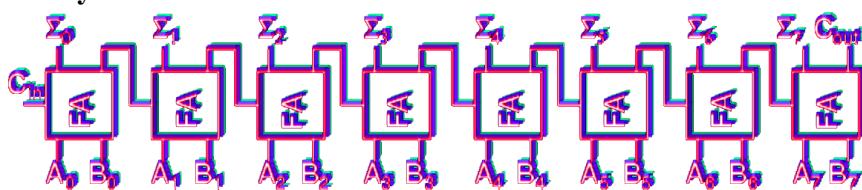
- Color Codes

From: howstuffworks.com/lcd5.htm



- More html examples:
immigration-usa.com/html_colors.html
- 24 bit color -> 2^{24} ~ 17 million colors
 - Red 1 B => 256 shades
 - Green 1 B => 256 shades
 - Blue 1 B => 256 shades

Binary arithmetic:



- Bit by bit addition is done right to left, with **carry bits**

- Examples: Adding

$$\begin{array}{r}
 3 \quad 00011 \quad 5 \quad 00101 \quad 5 \quad 00101 \\
 +4 \quad +00100 \quad +5 \quad +00101 \quad +7 \quad +00111 \\
 \hline
 7 \quad 00111 \quad 10 \quad 01010 \quad 12 \quad 01100
 \end{array}$$

- Subtraction can be done by employing **borrow bits**, or more simply, by adding something called a 2's complement.

- Examples:

$$\begin{array}{r}
 10 \quad 01010 \quad 10 \quad 01010 \\
 -6 \quad -00110 \quad +(-6) \quad +11010 \text{ (2's c)} \\
 \hline
 4 \quad 00100 \quad 4 \quad 100100
 \end{array}$$

↑ overflow

- The concept of a *complement* of a decimal number:

$$\begin{array}{ll}
 -N \quad \underline{10's c} \\
 \begin{array}{ll}
 -1 \rightarrow 9 & 10 \rightarrow 10 \\
 -2 \rightarrow 8 & -6 \rightarrow +4 \\
 -3 \rightarrow 7 & 4 \rightarrow 14 \\
 -4 \rightarrow 6 & 8 \rightarrow 8 \\
 -5 \rightarrow 5 & -6 \rightarrow +4 \\
 -6 \rightarrow 4 & 2 \rightarrow 12 \\
 -7 \rightarrow 3 & 7 \rightarrow 7 \\
 -8 \rightarrow 2 & -9 \rightarrow +1 \\
 -9 \rightarrow 1 & 2 \rightarrow -2
 \end{array}
 \end{array}$$

- 2's complement procedure:

- Reverse all the bits of N
- Add 1 to the result. This is N^* .
- The sign of N^* (as well as N) is shown by the most significant bit: 0 = "+"; 1 = "-"
- Examples:

$$\begin{array}{l}
 \text{sign bit} = 1+1 \\
 N=6 = \boxed{0}0110 \\
 \begin{array}{r}
 11001 \quad \text{step\#1} \\
 +1 \quad \text{step\#2}
 \end{array} \\
 -N=N^*=-6 = \boxed{1}1010 \\
 \text{sign bit} = 1-
 \end{array}$$

$$N^* = \boxed{1}1110 \text{ what is } -N?$$

$$\begin{array}{r}
 00001 \quad \text{step\#1} \\
 +1 \quad \text{step\#2} \\
 \hline
 \boxed{0}0010 = N \quad \therefore -N = -2
 \end{array}$$

- All the 2's complement numbers that fit into a byte.
 - 127 positive numbers N (sign bit = 0)
 - 128 negative numbers N^* (sign bit = 1)

- Zero (not shown)

N	decimal	$N^x = -N$	decimal
00000001	= 1	1111111	= -1
00000010	= 2	11111110	= -2
00000011	= 3	111111101	= -3
00000100	= 4	111111100	= -4
00000101	= 5	111111011	= -5
00000110	= 6	111111010	= -6
⋮	⋮	⋮	⋮
01111110	= 126	10000010	= -126
01111111	= 127	10000001	= -127
x	= 128	10000000	= -128

Error Correction Codes (ECC):

- Provides self-correction of errors that occur in the data when transporting data
 - Scratched disk alter recorded data:

From: hardwaresecrets.com/

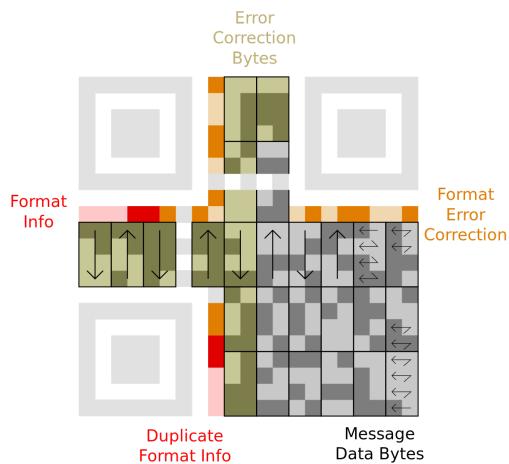
- Cosmic rays flip one bit in a 4GB chip everyday:

From: spectrum.ieee.org/

- o Defaced QR code:

From: [hwww.i-programmer.info](http://www.i-programmer.info)

- o Reed-Solomon ECC code in QR:



en.wikiversity.org/wiki/Reed%20-%20Solomon_codes_for_coders

Quiz #1 & selected solutions

BOOLEAN ALGEBRA

(Photo credit: Vic Lee, King Features Syndicate)

Some Preliminaries...

Binary numbers can also be used to represent truth or **logic values**.

Logic defined: the process of classifying information.

Binary logic (or more commonly, *digital logic*) is the process of classifying information into two distinct classes, e.g.

(TRUE, FALSE) = truth values
 (Yes, No)
 (CLOSE, OPEN) = relay positions
 blown, intact = fuse state
 (ON, OFF) = switch positions
(1, 0) = binary numbers, or (Logic 1, Logic 0)

Logic design is based upon the **three logic operators**

Binary Logic Operations (Variables)

- AND: $z = x \cdot y$
- OR: $z = x + y$
- NOT: $z = x'$

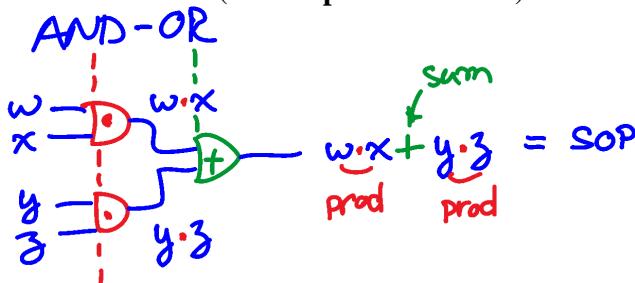
Binary Logic Operations

OR	XOR	AND
$0 + 0 = 0$	$0 \oplus 0 = 0$	$0 \cdot 0 = 0$
$0 + 1 = 1$	$0 \oplus 1 = 1$	$0 \cdot 1 = 0$
$1 + 0 = 1$	$1 \oplus 0 = 1$	$1 \cdot 0 = 0$
$1 + 1 = 1$	$1 \oplus 1 = 0$	$1 \cdot 1 = 1$

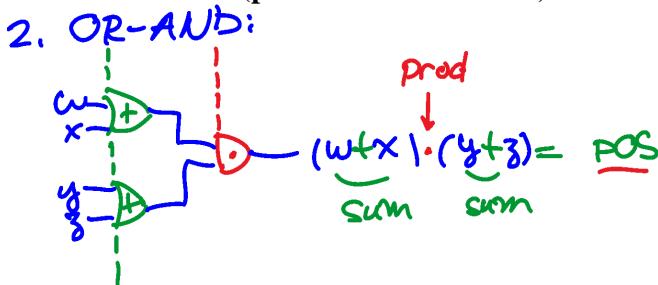
Two Level Logic Circuits with AND/OR/XOR gates:

From: computer.howstuffworks.com/boolean1.htm

- AND-OR circuits (sum of product = SOP)



- OR-AND circuits (product of sum = POS)



These circuits can also be described algebraically with the use of an algebra system for logic variables called...

Boolean Algebra

- **Fundamental properties of Boolean Algebra:** Each x, y and z are elements of $B = \{0,1\}$

1. **Identities:** (P3, P4) (Dual)

$$\begin{array}{ll} x+0 = x & x \cdot 1 = x \\ x+1 = 1 & x \cdot 0 = 0 \end{array}$$

Also Idempotency: (P6)

$$x+x = x \quad x \cdot x = x$$

2. **Commutativity:** (P1)

$$x+y = y+x \quad x \cdot y = y \cdot x$$

3. **Associativity:** (P2)

- $x+(y+z) = (x+y)+z$ $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- 4. **Distributivity:** (P8)
 $x \cdot (y+z) = (x \cdot y) + (x \cdot z)$ $x \cdot (y+z) = x \cdot y + x \cdot z$
- 5. **Existence of the complement:** (P5)

There exists an element x' , called NOT x , such that

$$x+x' = 1 \quad x \cdot x' = 0$$

- 6. **Involution:** (P7) $(x')' = x$
- 7. **Absorption:** (P12)

$$x+xy = x \quad x(x+y) = x$$

- 8. **Adjacency:** (P9)

$$xy+xy' = x \quad (x+y) \cdot (x+y') = x$$

- 9. **DeMorgan's Law:** (P11)

$$(x+y+z)' = x'y'z' \quad (x \cdot y \cdot z)' = x'+y'+z'$$

- **Duality:** Left and right hand properties above are *duals*

- A dual may be derived by interchanging

- 1 and 0

- • (AND) and + (OR)

- *Examples:*

$$\begin{array}{ll} x+0=x & x \cdot (x+y) = x \\ \downarrow \downarrow & \downarrow \downarrow \downarrow \\ x \cdot 1=x & x+x'y = x \end{array}$$

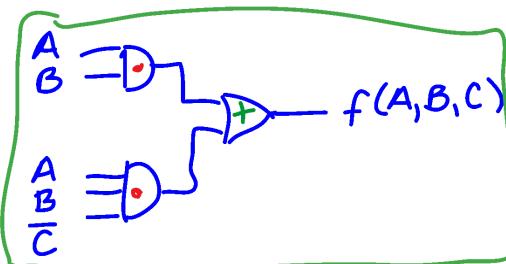
Boolean Functions and Logic Circuits

- Boolean function f
 - $f(A, B, C)$ is an algebraic expression of A, B, C
 - A, B, C are Boolean variables
- Boolean functions are implemented by logic circuits
- Boolean functions may be simplified, resulting in simpler logic circuits
- Circuits and functions may be verified by constructing a truth table
- *Example #1:*
 - Derive a logic circuit from a Boolean function:

$$f(A, B, C) = \underbrace{A \cdot B}_{\text{products}} + \underbrace{A \cdot B \cdot \bar{C}}_{\text{sum}} = \text{SOP}$$

= sum of products

Circuit (1)



- *Example #2:*

- Derive a Boolean function for a half adder:

Derive a Boolean function for a half adder.

A	0	0	1	1
$+ B$	$+ 0$	$+ 1$	$+ 0$	$+ 1$
C	0	1	1	0
S	0	1	1	0

$\underbrace{+ 0}_{0} \quad \underbrace{+ 1}_{1} \quad \underbrace{+ 0}_{1} \quad \underbrace{+ 1}_{0}$

$\underbrace{\quad\quad\quad\quad}_{S} \quad \underbrace{\quad\quad\quad\quad}_{C}$

$C = AB$

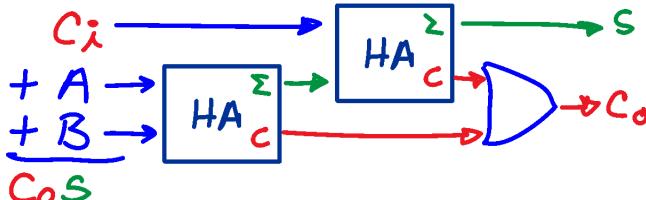
$S = \bar{A}B + A\bar{B}$

$= A \oplus B$

$A \rightarrow \boxed{HA} \xrightarrow{\Sigma} S$

$B \rightarrow \boxed{HA} \xrightarrow{c} C$

- Make a full adder from two half adders:



- *Example#3*

- Simplify the Boolean function of *Example#1* by pattern matching terms with the Boolean properties above:

Boolean Algebra (pattern matching)

$$f = \underbrace{AB}_x + \underbrace{ABC\bar{C}}_x = x$$

pattern

$$\wedge f = \underline{\underline{AB}}$$

- Compare before and after circuits with a truth table:

TruthTable;

Truth Table		2	minterm	1
ABC	A+B	\bar{ABC}	$f = AB + A\bar{B}\bar{C}$	
000	0	0	0+0=0	
001	0	0	0+0=0	
010	0	0	0+0=0	
011	0	0	0+0=0	
100	0	0	0+0=0	
101	0	0	0+0=0	
110	1	1	1+1=1	
111	1	0	1+0=1	

← same →

- Example #4: More simplifications

$$f = A\bar{B}\bar{C} + \bar{B}$$

$$\underbrace{A\bar{B}\bar{C}}_{y} + \underbrace{\bar{B}}_{x}$$

$$\underbrace{xy}_{\text{pattern}} + x = x$$

$$\text{Let } \begin{cases} x = \bar{B} \\ y = A\bar{C} \end{cases}$$

$$\therefore f = x = \bar{B} \checkmark$$

$$f = ABC + A\bar{B}C$$

$$\underbrace{ABC}_{x} + \underbrace{A\bar{B}C}_{\bar{x}}$$

$$\underbrace{xy}_{\text{pattern}} + \underbrace{x\bar{y}}_{\text{pattern}} = x$$

$$\text{Let } \begin{cases} x = AC \\ y = \bar{B} \end{cases}$$

$$\therefore f = x = AC \checkmark$$

- Example #5: DeMorgan's Law

$$F = \bar{A}B + C + \bar{D}$$

$$\bar{F} = ? \quad \overline{\bar{A}B + C + \bar{D}}$$

pattern:

$$\overline{x+y+z} = \bar{x}\bar{y}\bar{z}$$

$$\begin{aligned} \bar{F} &= \overline{\bar{A}B} \cdot \overline{C} \cdot \overline{\bar{D}} \\ &\quad \xrightarrow{x+y \rightarrow \text{pattern: } \bar{x}\bar{y}} \bar{x}\bar{y} = \bar{x} + \bar{y} \\ &= (\bar{A} + \bar{B}) \cdot \bar{C} \cdot \bar{D} \\ &= (A + B) \bar{C} \cdot D \end{aligned}$$

Quiz #2 & selected solutions

LOGIC GATES AND CIRCUITS

DeMorgan's Laws Shows Equivalent Graphical Symbols for Logic Gates: Examples are given to describe

- NAND gate drawn with an OR symbol

$$\begin{aligned} x &\rightarrow \text{D} \circ \quad \overline{x \cdot y} = \overline{x + y} \\ y &\rightarrow \text{D} \circ \quad \text{DeM} \\ &\quad \text{Anding} \quad \text{ORing} \end{aligned}$$

- NOR gate drawn with an AND symbol

$$\begin{aligned} x &\rightarrow \text{D} \circ \quad \overline{x + y} = \overline{x \cdot y} \\ y &\rightarrow \text{D} \circ \quad \text{DeM} \\ &\quad \text{ORing} \quad \text{Anding} \end{aligned}$$

- NOTs built from NANDs, NORs and XORs

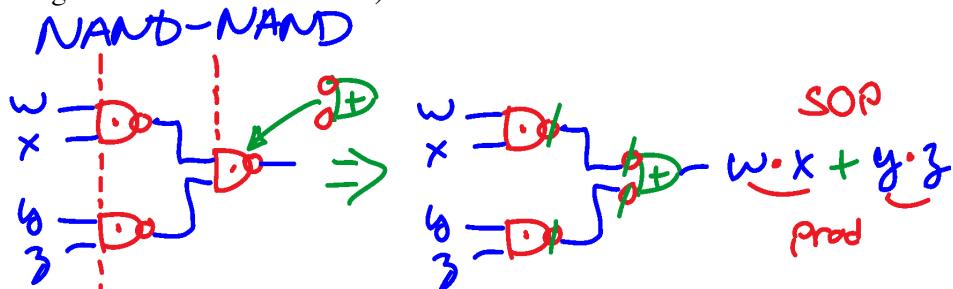
$$x \text{ I } \text{D} \circ - \overline{x \cdot x} = \overline{x} \quad x \text{ I } \text{D} \circ - \overline{x + x} = \overline{x}$$

$$x \text{ I } \text{D} \circ - \overline{x \cdot 1} = \overline{x} \quad x \text{ I } \text{D} \circ - \overline{x + 0} = \overline{x}$$

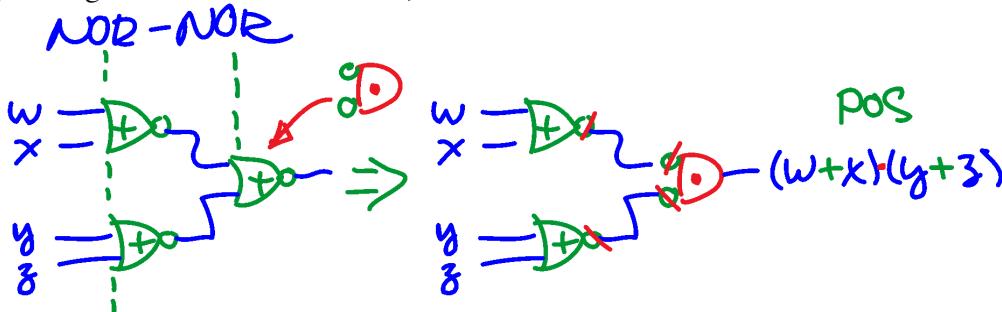
$$\text{XOR: } x \text{ I } \text{D} \circ - \overline{x}$$

Two Level Logic Circuits with Other Gates: Examples are given to describe

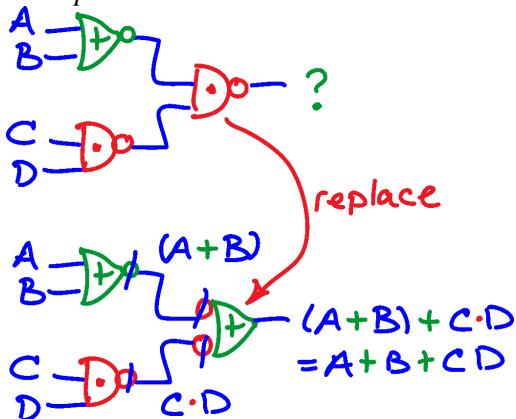
- NAND-NAND circuits = AND-OR circuits; makes **SOP** functions
(Leading NAND looks like an OR)



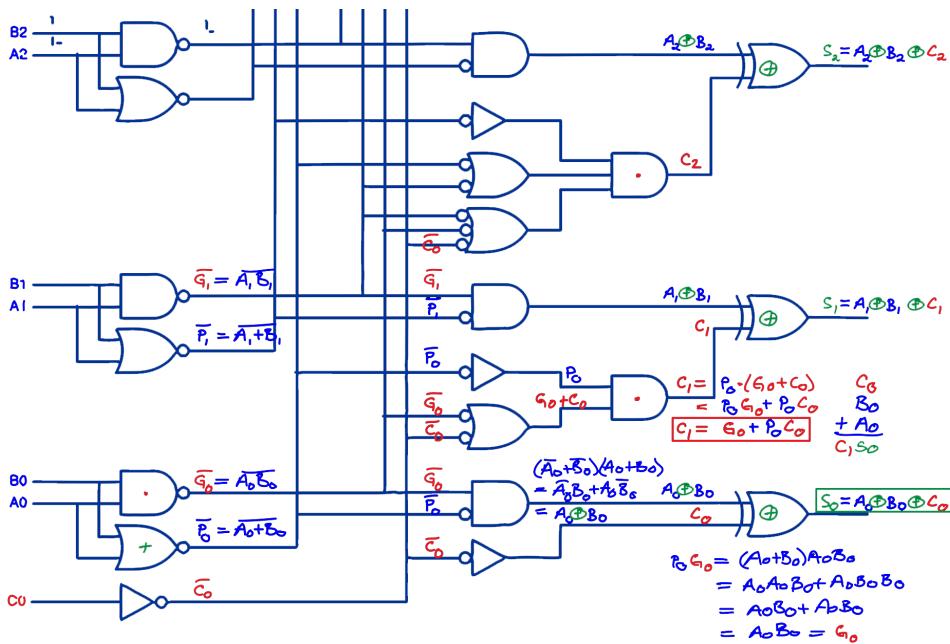
- NOR-NOR circuits = OR-AND circuits; makes **POS** functions
(Leading NOR looks like an AND)



- Example: NAND-NOR Combination



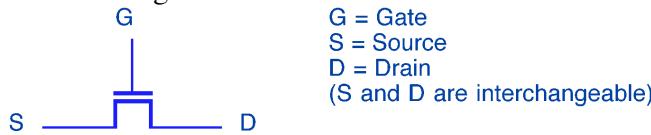
- Example: Carry-lookahead adder logic
 - Most heavily designed circuit in the history of electronics
 - NOT, NAND, NOR, XOR combination
 - Gate fronts and backs match so bubbles cancel



CMOS Implementation of Logic Gates

Examples are shown to implement **NAND**, **NOR**, and **NOT** gates from elementary NMOS and PMOS transistors.

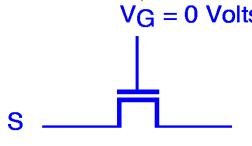
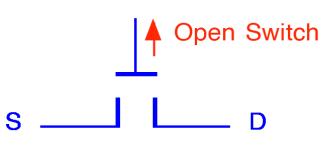
- CMOS transistors = NMOS plus PMOS
- Current flows between the Source and the Drain
- The Gate voltage controls the conduction value between the Source and Drain:



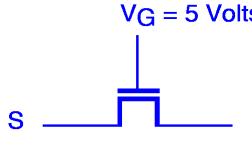
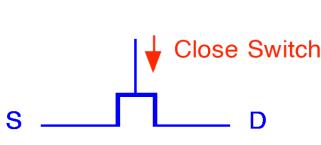
The NMOS transistor may be configured to operate in one of three different states, as determined by the **voltage** at the gate terminal V_G :

- Three states of a **NMOS** and **PMOS** transistors:

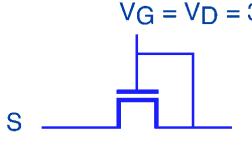
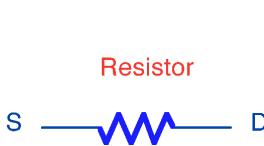
- **OFF state (Nonconducting)**



- **ON state (Conducting)**

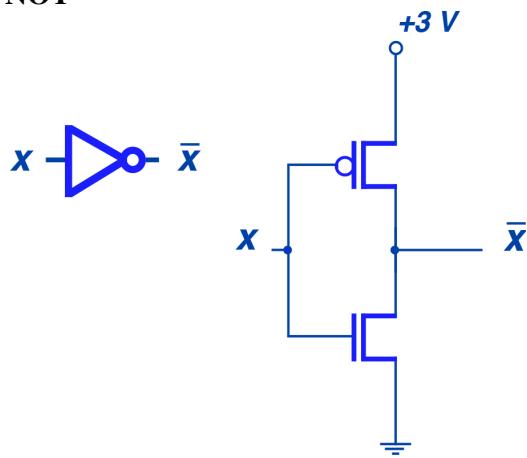


- **Resistive state (A resistor)**

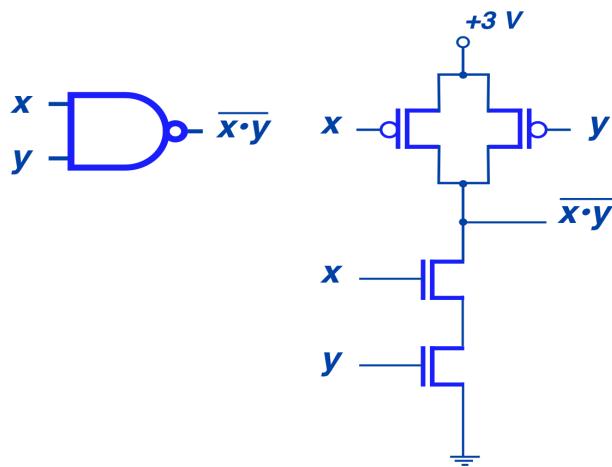


- **NAND**, **NOR** and **NOT** gates can be constructed from two to four transistors.

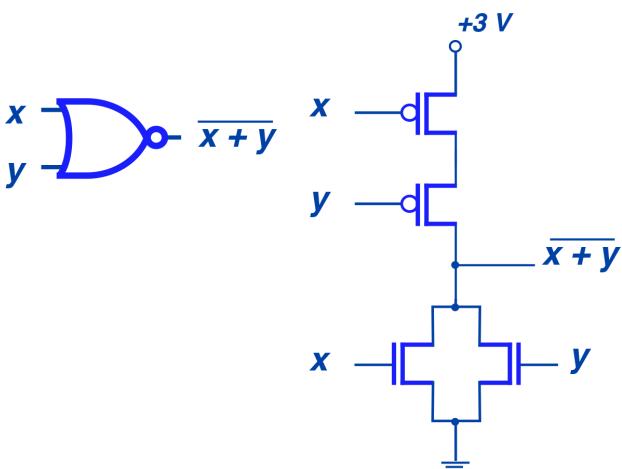
- NOT



- NAND



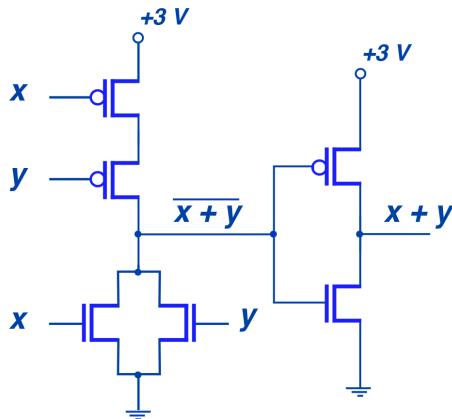
- NOR



- AND and OR gates

- Require at least six CMOS transistors.

- Example: OR gate = NOR plus NOT



- Integrated circuit layout for NOT, NAND and NOR gates, using CMOS.
- Zoom down inside an IC to see gates!

Quantum Computing Implementation of Logic Gates

Taken from: mcharemza_quant_circ.pdf

- Pauli X (NOT) gate

$|0\rangle$ State becomes $|1\rangle$ State

$$|0\rangle \xrightarrow{+} |1\rangle$$

- CNOT gate (controlled NOT)

$|0\rangle$ State becomes $|1\rangle$ State if the Control is $|1\rangle$

$$|1\rangle \xrightarrow{\bullet} |1\rangle$$

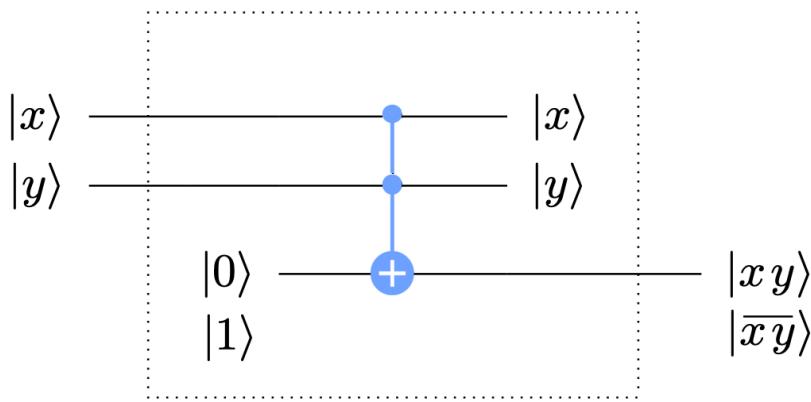
$$|0\rangle \xrightarrow{+} |1\rangle$$

- Toffoli gate (CCNOT)

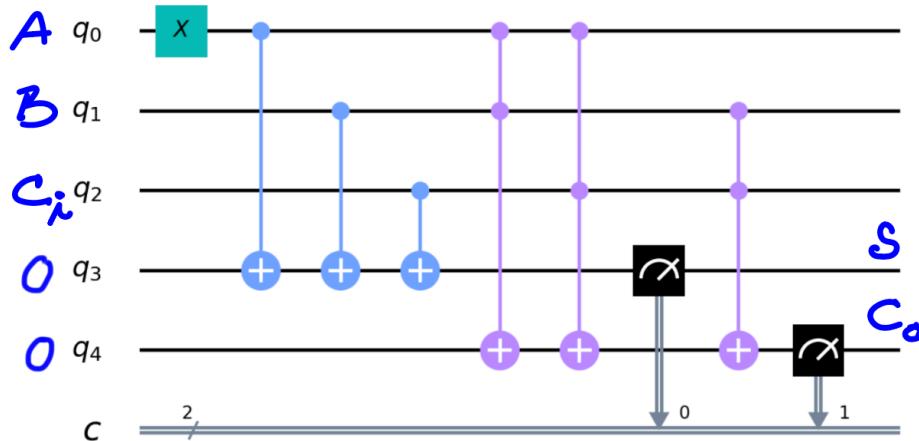
$$\begin{array}{c} |x\rangle \xrightarrow{\bullet} |x\rangle \\ |y\rangle \xrightarrow{\bullet} |y\rangle \\ |z\rangle \xrightarrow{+} |x \oplus (y \wedge z)\rangle \end{array}$$

- AND/NAND gates

$0 \oplus xy = xy, 1 \oplus xy = (xy)'$



- Example Quantum Full Adder Circuit



(Image: thequantuminsider.com)

- H gate**

$|0\rangle$ State becomes 50% superimposed with $|1\rangle$ State

$$|0\rangle \xrightarrow{\text{H}} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

Example random number generator:

$$|0\rangle \xrightarrow{\text{H}} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$|0\rangle \xrightarrow{\text{H}} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$|0\rangle \xrightarrow{\text{H}} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

⋮

$$|0\rangle \xrightarrow{\text{H}} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

Quiz #3 & selected solutions

MINTERMS

Suppose we want to expand a certain **SOP** function f_1 into canonical form whereby each resulting product term contains a literal of every independent variable of f_1 .

$$\begin{aligned}
 f_1(A, B, C) &= \bar{A} \cdot B + B \cdot \bar{C} + A \cdot \bar{B} \cdot \bar{C} = \text{SOP} \\
 &= \bar{A}B(C+\bar{C}) + B\bar{C}(A+\bar{A}) + A\bar{B}\bar{C} \\
 f_1(A, B, C) &= \bar{A}B\bar{C} + \bar{A}B\bar{C} + A\bar{B}\bar{C} + ABC = \text{canonical SOP}
 \end{aligned}$$

minterms

The product terms above are called **minterms**, the properties of which are now be presented.

Minterm Properties and Notation

- A **minterm** is a product term which produces a single **1** in a truth table

row	ABC	$\bar{A}\bar{B}\bar{C}$	$\bar{A}\bar{B}C$	$\bar{A}B\bar{C}$	$\bar{A}BC$	$AB\bar{C}$	ABC	f_1	\bar{f}_1
0	000	0	0	0	0	0	0	0	1
1	001	0	0	0	0	0	0	0	1
2	010	1	0	0	0	0	0	1	0
3	011	0	1	0	0	0	0	1	0
4	100	0	0	0	0	0	0	0	1
5	101	0	0	0	0	0	0	0	1
6	110	0	0	1	0	0	0	1	0
7	111	0	0	0	0	1	1	1	0

- The minterm which yields a **1** in row i is denoted as minterm m_i

- Express f in terms of minterms:

- Compose a minterm list for f . (An atomic list)
- Example:

$$\begin{aligned}
 f_1 &= \bar{A}B\bar{C} + \bar{A}B\bar{C} + AB\bar{C} + ABC \\
 &= m_2 + m_3 + m_6 + m_7 \\
 &= \sum m(2, 3, 6, 7)
 \end{aligned}$$

- Additional properties of minterm lists

- $f = \sum m(\text{row\#s where } f = 1)$
- $f' = \sum m(\text{row\#s where } f = 0)$
- $\sum m(\text{all row\#s}) = 1$

- Minterm index i

- Obtained by determining the row code for which $m_i = 1$

- Example:

$$\begin{aligned}
 \bar{A}\bar{B}\bar{C} &= 1 \text{ where?} \\
 \downarrow & \downarrow & \downarrow \\
 (0 & 1 & 0) & \text{in row 2} \\
 2
 \end{aligned}$$

$$\therefore \bar{A}\bar{B}\bar{C} = m_2$$

Quiz #4 & selected solutions (also includes *Maxterms* discussed below)

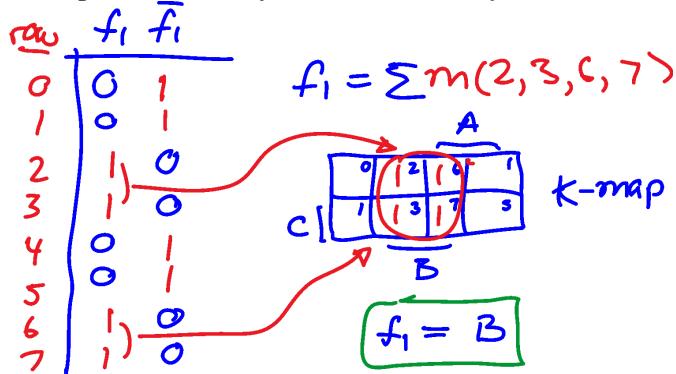
K-MAPS

Karnaugh Maps

What is a K-map? It is a graphical tool that quickly finds minimal algebraic forms of Boolean functions. The *SOP* forms are discussed here; *POS* forms are described in a later section.

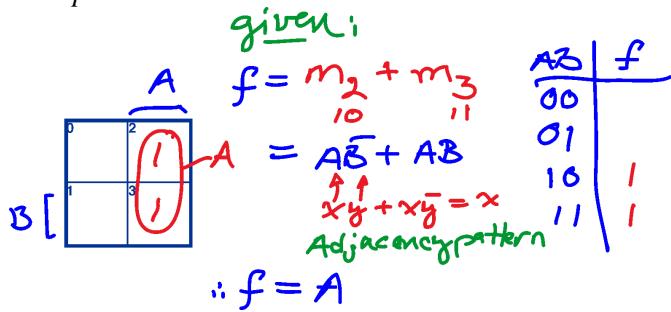
Karnaugh Map Properties

- Each cell in a K-map for a function f corresponds to a row of the truth table describing f
- **Cell i** is a place mark for minterm m_i .
- K-map labels identify the *coincidence of literals* to combine adjacent minterm.

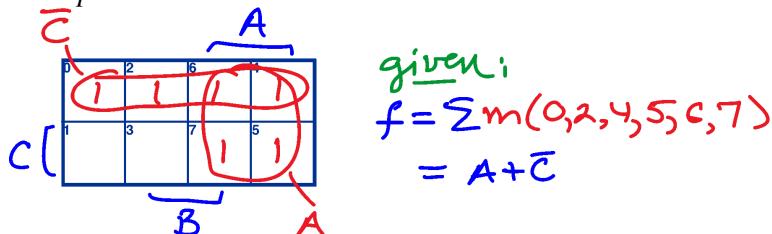


Sizes of K-maps

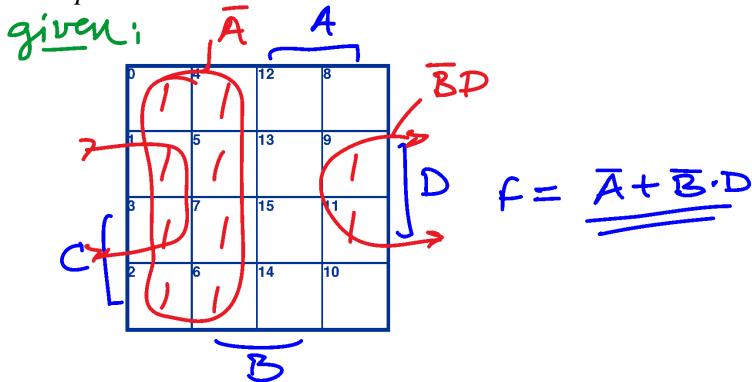
- Example: 2 variable



- Example: 3 variable

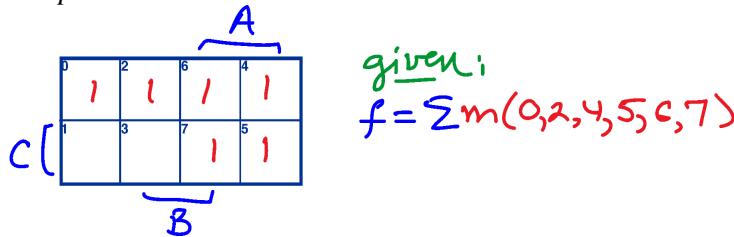


- Example: 4 variable



Procedure for Plotting SOP Functions on a K-map

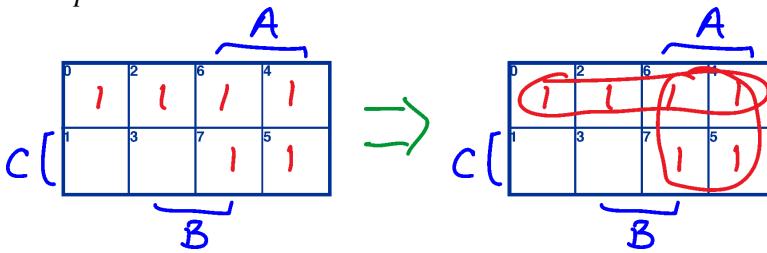
- Determine the minterms m_i contained in f (found by observing the rows where $f = 1$ in the truth table).
- Plot the 1's of the function to be minimized on the K-map.
 - For each minterm m_i in f , enter a 1 in cell i .
 - Example:



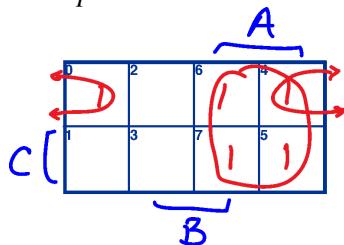
- For each *don't care* contained in f , enter a d (or x) in the associated K-map cell (see example later).

Procedure for reading minimal SOP expressions from K-maps

- Draw loops around adjacent 1-entries (cells with 1's) in largest groups possible.
 - Group size in a power of two (e.g. 1 cell, 2 cells, 4 cells, 8 cells, etc.)
 - Example:

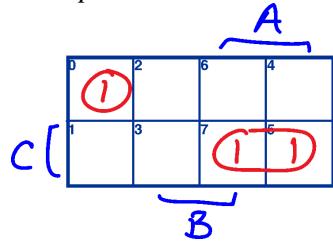


- Cells over the left and right edges, or the upper and lower edges are also *defined* to be adjacent.
 - Example:



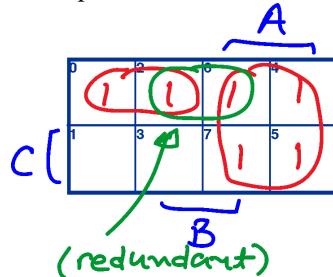
- 1-entries not adjacent to other 1-entries are circled as groups of one.

- Example:



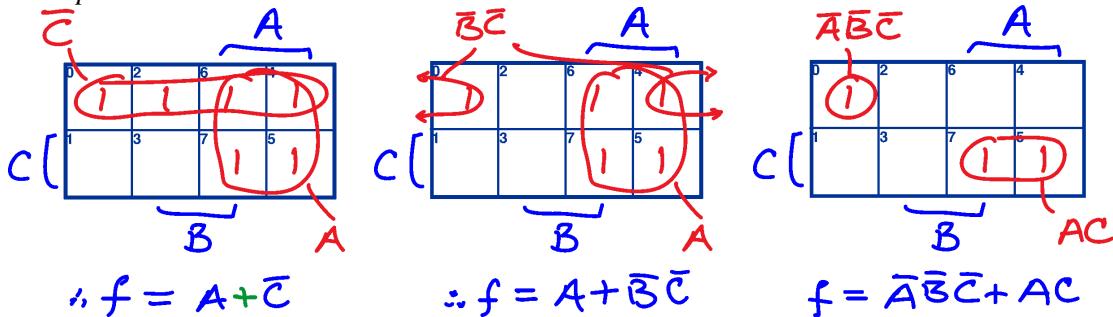
- Discard redundant groupings

- Discard those entries covered entirely by other groups
- Example:



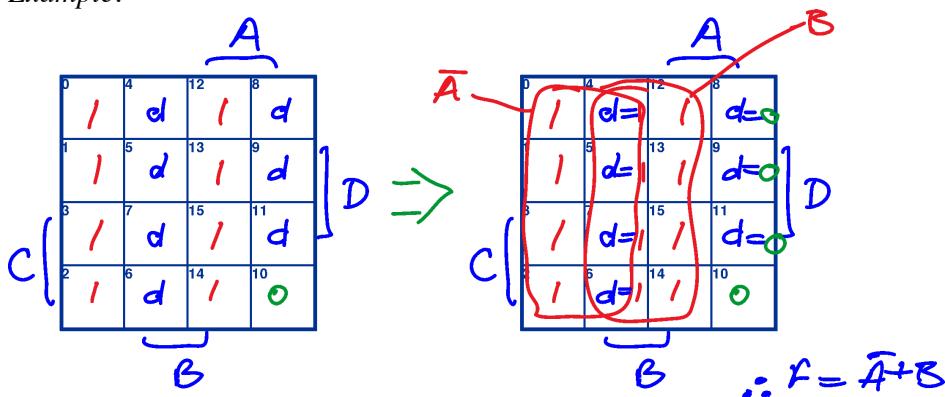
- For each group (as seen in the several examples above),

- Read off the **coincident literals**, by exploiting K-map labels
- AND those literals together to form products formed by the groups
- OR the resulting products to create a SOP expression
- Examples:



Map Simplification Resulting from Don't Cares

- Don't care = d (or X) = {0,1} (either a 0 or a 1)
- Group 1-entries as before, but
 - Also include any d -entries which serve to increase the size of the group of 1's
 - Treat unused d -entries as 0-entries
 - Must have at least one 1-entry in all groups
 - Example:



- Never group cells consisting **entirely** of don't care entries. This results in a redundant group.

Quiz #5 & selected solutions (includes POS usages)

MAXTERMS & K-MAPS

Maxterm Properties and Notation

Now we want to consider expanding a certain **POS** function f_2 into canonical form whereby each resulting sum term contains a literal of every independent variable of f_2 .

$$\begin{aligned}
 f_2(A, B, C) &= \underbrace{(A+B)}_{\text{sum}} \cdot \underbrace{(\bar{A}+B+C)}_{\text{sum}} \cdot \underbrace{(\bar{A}+B+\bar{C})}_{\text{sum}} = \text{POS} \\
 &= (A+B+C) \cdot (A+B+\bar{C}) \cdot (\bar{A}+B+C) \cdot (\bar{A}+B+\bar{C}) \\
 &\quad \xrightarrow{\text{Maxterms}} \xrightarrow{\text{canonical POS}}
 \end{aligned}$$

The sum terms above are called **Maxterms**, the properties of which now follow.

- A **Maxterm** is a sum term which produces a **0** in a truth table

row	ABC	M_0	M_1	M_4	M_5	f_2	\bar{f}_2
		$(A+B+C)$	$(A+B+\bar{C})$	$(\bar{A}+B+C)$	$(\bar{A}+B+\bar{C})$		
0	000	0		1	1	1	0
1	001	1	0	1	1	0	1
2	010	1		1	1	1	0
3	011	1		1	1	1	0
4	100	1		0	1	0	1
5	101	1		1	0	0	1
6	110	1		1	1	1	0
7	111	1		1	1	1	0

- Maxterm which yields a **0** in row i is denoted as maxterm M_i

- Expressing f in terms of Maxterms:

- Compose a Maxterm list for f . (An atomic list)
- *Example:*

$$\begin{aligned}
 f_2 &= (A+B+C) \cdot (A+B+\bar{C}) \cdot (\bar{A}+B+C) \cdot (\bar{A}+B+\bar{C}) \\
 &= M_0 \cdot M_1 \cdot M_4 \cdot M_5 \\
 &= \prod M(0, 1, 4, 5)
 \end{aligned}$$

- Additional properties of Maxterm lists

- $f = \prod M(\text{row}\#s \text{ where } f = 0)$
- $f' = \prod M(\text{row}\#s \text{ where } f = 1)$
- $\prod M(\text{all row}\#s) = 0$

- Maxterm index i

- Obtained by determining the row code for which $M_i = 1$

- Example:

$$\bar{A} + B + \bar{C} = 0 \text{ where ?}$$

$\downarrow \downarrow \downarrow$
 $\boxed{1 \ 0 \ 1}$ in row 5
 $\underline{5}$

$$\therefore \bar{A} + B + \bar{C} = M_5$$

Other Properties of minterms and Maxterms

- $f = \sum m(\text{row}\#s) = \prod M(\text{opposite row}\#s)$
 $f = \prod M(\text{row}\#s) = \sum m(\text{opposite row}\#s)$
- If $f = \sum m(\text{row}\#s)$ then $f' = \sum m(\text{opposite row}\#s)$
If $f = \prod M(\text{row}\#s)$ then $f' = \prod M(\text{opposite row}\#s)$

- Examples:

For our 2 tables earlier:

$$f_1 = \sum m(2, 3, 6, 7) = \prod M(0, 1, 4, 5) = f_2$$

$$\bar{f}_1 = \sum m(0, 1, 4, 5) = \prod M(2, 3, 6, 7) = \bar{f}_2$$

- $m_i' = M_i$

$$M_i' = m_i$$

- Examples:

$$m_i + M_i = m_i + \bar{m}_i = 1$$

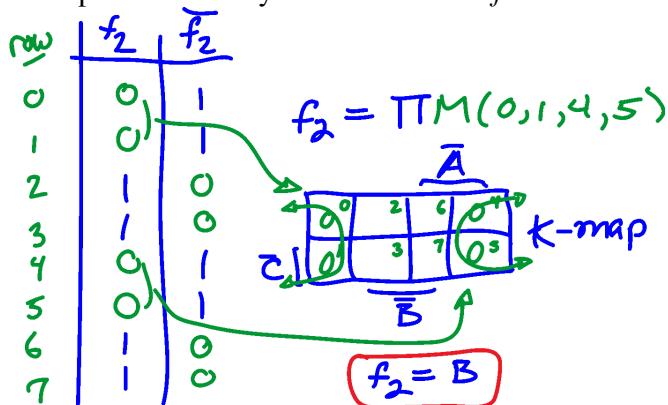
$(x + \bar{x} = 1)$

$$m_i \cdot \bar{M}_i = m_i \cdot m_i = m_i$$

$(x \cdot x = x)$

K-Map POS Properties

- Cell i is a place mark for Maxterm M_i .
- K-map labels identify the *coincidence of literals* to combine adjacent Maxterms.



Procedure for plotting and reading minimal POS expressions from K-maps

- Plot the 0's of the function to be minimized on a K-map.
 - For each maxterm M_i in f , enter a 0 in cell i .

- o Example:

	0	2	6	4	A
c	0	0			
	1	3	7	5	B

given:
 $f = \text{PI}(0, 1, 2, 3, 4)$

- Draw loops around adjacent 0-entries.

- For each group
 - o Read off the complement of the **coincident literals** covering the group
 - o OR those literals together to form sums
 - o AND the resulting sums to create a product
 - o Example:

	0	2	3	4	\bar{A}
\bar{c}	0	0			
	1	3	7	5	\bar{B}

$(B+C)$

$\therefore f = A(B+C)$